Introduction to Computer Graphics

L1: Introduction, Application
Will Learn
Fundamentals of Computer Graphics Algorithms
Basics of real-time rendering: Basic OpenGL
C++
L2: Cubic Curves
Hermite Basis
Cubic Blossom
Bernstein Polynomials
Cubic Control Polygon
Three Bases for Cubic Curves
Monomial basis
Hermite basis
bernstein basis
L3: Curves and Surfaces
Curves
Order of Continuity
CO = continuous
G1 = geometric continuity
tangents align at the seam
C1 = paraMetric continuity
same velocity at the seam
C2 = curvature continuity
tangens and their derivatives are the same
Cubic B-Splines
Automatically C2
Converting Between Bezier & BSpline
Surfaces
Trangle Meshes
Simple, rendered directly
not smooth, need many trangles to smooth

Tensor Product Splines

From Curves to Surfaces

From Curves to Surfaces

* P(u,v) = (1-uy’
+ 3u(1-u)?
+ 3u(1-u)
+ u’

* Make P;’s move along
curves!

Subdivision Surfaces
Corner Cutting
Subdividing Triangles

Subdividing Triangles

Ipﬁ”wﬁﬁﬁ

Wew " ver

e

Catmull-Clark Cubdivision

Catmull-Clark Subdivision

Advantages
Arbitrary topology
Smooth at boundaries
Level of detail, scalable
Simple representation
Numerical stability, well-behaved meshes
Code simplicity
Disadvantage
Procedural definition
Not parametric
Tricky at special vertices
Implicit Surfaces
Surface defined implicitly by a function
f(x, y, z) = 0 (on surface)
f(x, y, z) < 0 (inside surface)
f(x, y, z) > 0 (outside surface)
Pros:
Efficient check whether point is inside
Efficient Bollean operations
Can handle weird topology for animation
Easy to do sketchy modeling
Cons:

Hard to generate points on the surface
Procedural

L4: Coordinates and transformations
Linear algebra notation
Matrix notation

Matrix notation

- Linearity implies

—

. L is determined by {E(bz) ?:1

- Algebraic notation:
C1

(51 b 53) (02) — (E(gl) L(bs) [,(53)) (2)

C3 C3

Translation

Translation

Homogeneous Coordination

Why homogeneous?

- This picture gives away almost

the whole story.

NG

NG AN\

A ¥
IR VANANVAN

D 57 T, L R

ainy-) 4 |

[\]

A

.

/7/

I

/

. =AM\

» For perspective projection

Perspective in 2D

The projected point in T / >
homogeneous r_ 1
. coordinates
‘=z (we just added w=1): 1

® p=(x,2)

P Pl o) 1:1512/1:20:01 - Frames & hierarchical modeling > n®» 0B

« For ray tracing algorithm

» L5: Hierachical modeling and scene graphs
« Coordinate System transformation

Translation Matrix

Translation Matrix

vV,

e —-—— ..

Rotation Matrix

< S\WO
@0 <=0 O
sno 0® O

My, =R(6)=2 (7" |

Forward and inverse kinematics
Joints

» Joint State Parameters

Joint State Parameters

n

Offset: (0,6)
Y, Orientation: Rot(-45)
— __ Limit: None

13
Offset: (4,0)
X; Orientation: Rot(30)
Y world 30 Limit: [-90,90]
[-90°.90]
Xwodd
Orientation: Rot(50)
Limit: [0,90]
« Offset
» Orientation
o Limit

+ Forward Kinematics

Forward Kinematics

@ Goal: Compute the position of P
Y set: (0,6) in the world space

_ '_ _ Orientation: Rot(-45)

Xword @e t: (5,0) Orientation: Rot(30)

Orientation: Rot(50)

Inverse Kinematics

Inverse Kinematics

* |nverse Kinematics

— Given a desired location and orientation of the end
effector, what are the required joint angles to put it there?

€1,€,)) F(6y, 6, 6;) ‘ (6., 6, 65) r (eye,)
(‘o/rwaii Ki‘ﬁFnTati_?sA Inverse Kinematics
Hierarchical tree and scene graph
L6: Introduction to Animation and Skinning/Enveloping
Types of Animation:
Keyframing
Procedural
Express animation as as funciton
Physicial Based
Animation Controls
Forward Kinematic
Inverse Kinematic
Skinning Characters
Bind Skin vertices to bone

Motion Capture
Retargeting

Character Animation
Skinning/Enveloping
Skeletal subspace deformation (SSD)

» Bind vertice to 1 bone or multiple bone

Examples

Colored
triangles are
attached to 1

bone

Black
triangles are
attached to
more than 1

» Vertex Weights
« Linear Blend Skinning

Computing Vertex Positions

 Basic Idea 1: Transform each vertex pi with each
bone as if it were tied to it rigidly.

» Basic Idea 2: Then blend the results using the

weights.

p p’i is the vertex i

transformed using
; T]pz bone j.

Tj is the current
transformation of
bone j.
p’iis the new

A I‘I :ﬂ’._!.l. .II'.“I ?

pi] —

Bind Pose and weight

Skinning Pseudocode

* Do the usual forward kinematics

— get a matrix Tj(t) per bone
(full transformation from local to world)

* For each skin vertex p;
/ —1
— pi=)_ w; T5(t) B "y
J
* Inverse transpose for normals! @

\b n; = sz’jTj(t)Bfl n;
J

« L7 Particle System and ODE

| L L7: letide Syctem aad ODEs
Tﬂ!%ﬂ" ﬂmma‘twl :j‘ Pb,dfﬁcnl‘ Bﬂs?«l

| . ‘Paw:cle gys-fm |

- Recall: Types of Animation

» Keyframing

* Procedural

* Physically-based
— Particle Systems: TODAY

* Smoke, water, fire, sparks
* Usually heuristic, but not always
' | » Mass-Spring Models (cloth) NEXT CLASS
\ — Continuum Mechanics (fluids), finite elements
‘ ' [¢ Not in this class (FEM in 6.838!) ~
— Rigid body simulation
* Not in this class

i‘ ‘H)‘F;‘ 0"/' ipynaLw'csI
Types of Dynamics

* Point Ul
il
« Rigid body D Pl
‘ | + Deformable body (clothes, fluids, smoke, ...)
S'l“ NJ b’l\/\

Mark Carlson

|

|

|

|

‘ , Ewitter
| B
— o,

|

\

Roudomess N
| 677 F{a({(’”j 7~ ghake, I:ira‘, Wufe/, épapk_

L8: More ODEs, mass-spring modeling, cloth simulation
Euler's Method: Not Always Stable
Midpoint
Trapezoid
Runge-Kutta (RK4) Integrator
Mass-Spring Modeling
Hair

Hair

Linear set of particles

Length-preserving structural springs like before

Deformation forces proportional to the angle
between segments

External forces

Mass-Spring Cloth

Cloth — Three Types of Forces

e Structural forces

— Try to enforce invariant
properties of the system

* E.g. force the distance
between two particles
to be constant

— Ideally, these should be constraints, not forces

* Internal deformation forces

— E.g. a string deforms, a spring board tries to remain flat
» External forces

— Gravity, etc. -

L9: Introduction to Rendering, Ray Casting
Rendering

Rendering = Scene to Image

N

11
- Image I

T W W WS W N e |

1\)
AR

Pixals Camera
Image

Ray Casting

Ray Casting

—_—

For every pixel
Construct a ray from the eye
-
For every object in the scene
Find intersection with the ray

Keep if closest

—
e 0 J 1O DEe 10 0 =0 s
DDIC

Shading

Shading: What Surfaces Look Like

== surface normal

+ Surface/Scene Properties % .
VvV

—— direction to light @
—) — viewpoint
o ‘(’,_Lo ertie_s
atte)

— Specular (shiny) &

\?C 900
 Light properties
o 9000
— Intensity, ...

Diffuse sphere Specular spheres
* Much more! to the surface and the light.

Surface/Scene Properties

Material Properties
Light Properties
Ray Casting vs. Ray Tracing

Ray Casting vs. Ray Tracing

» Ray casting = eye rays only,

%% tracing = also secondary

\‘LLL
S

The ray tracing
(5] algorithm also allows used for
°

19:24 /1:02:09 - Ray Casting vs. Ray Tracmg > nm

I » ©

Ray Representation

Ray Representation

Ray casting

problem statement:
Find smalles
such that P(t) lies

on a surface in the

scene

* Origin — Point
* Direction — Vector
— normalized can help

e Parametric line
— P(t) = origin + t * direction

direction
origin

I'd like to find the very
first intersection point, t,

Camera Obscura (Plnhole Camera)
;;_

~

i

These artlsts in these 1500s \ _\
3 were pretty cIeverr reaIIy =

Camera Description

Camera Description

Eye point e (center)

Orthobasis u, v, w (horizontal, up, direction)

Field of view angle

[]
)
oo
oQ
(¢
-
(¢}
(@}
—
jav)
=
UQ
(S
O
<
&
g~
o
)
~h
S
=\
S

Object
coordinates
World
coordinates
View
coordinates
Image
coordinates

Image Coordinates
Perspective vs. Orhographic

Perspective vs. Orthographic

perspective orthographic

 Parallel projection
* No foreshortening
* No vanishing point

Ray-Plane Intersection

Ray-Plane Intersection

* Intersection means both are satisfied
 So, insert explicit equation of ray into

implicit equation of plane & solve for t
P(t) =Ro +t-R,
HP)=n-P+D =0
n-(R,+t-R)+D=0
t = —(D +n-Ro)/n - Rd)

5

What's the deal

=)
WIICTIT Il 'I\d — U~
48:40 / 1:02:09 - Explici iCci

Ray-Sphere Interrsection

Ray-Sphere Intersection

* Insert explicit equation of ray into
implicit equation of sphere & solve for t
P(t) =Ro+t-R,

H(P) =P-P—714=10

(R,+tR) -(R,+tR) —12=0
wtz + (2Rd - Ro)t +(R,-Ro—12) =0

b G

Ray-Sphere Intersection

* 3 cases, depending on the sign of b? —4ac
« What do these cases correspond to?

* Which root (t+ or t-) should you choose?
— Closest positive!

PISSSISISE. "%

direction origin

Of course, in the
context of ray tracing,

L10: Ray Casting Il
Ray Casting
Ray-Triangle Intersection
Barycentric coorinates

Intersection with Barycentric Triangle

Intersection with Barycentric Triangle

» Again, set ray equation equal to barycentric equation
Rl TS < W A
— (R, +t Ry=a+p(b-a) +y(c-a) &~
* Intersectionif B+y<1 &pB=>0 &y=>0
(and t>t

min)

Barycentric Intersection Pros

Barycentric Intersection Pros

 Efficient
 Stores no plane equation

* Get the barycentric coordinates for free

— Useful for interpolation, texture mapping

4|

) 36:51/1:25:35

Barycentric Interpolation

Barycentric Interpolation
e e e

* Values v, v,, v; defined a\"f]f:‘es
— Colors, normal, texture coordinates, or other values
* P(a,B,y) = aa+ Bb + yc is the point
* v(a,B,y) =av, + Bv, +yvyis the
barycentric interpolation of
V|,V,,V5 at point P
— Sanity check: v(1,0,0) = v,

V1 L

But now I'm going to attach p

some additional information

Constructive Solid Geometry (CSG)

Constructive Solid Geometry (Cs<)

Il Pl © 4608/1:2535

Example

CSG Examples

Pl o) 51:06/1:2535

3, which corresponds
to this piece here.

Instancing and Transformations

Transform Ray

Transform Ray

e i

* New origin: Note that the w
origin g rigin component of
directionis 0 J

* New direction:

direction irection
§

wsc—/M &— OS5

origing

direction;

origings | s * direction g

World Space We don't have a triangle mesh FY&3
of this transformed object.

Calculated Normal after transformed

So How Do We Do It Right?

os My
Vgt @
‘os Vs

Incorrect Correct

Original
Pick any vector v, in the tangent plane,

hO\(VliS it transformed by matrix M? 5
TV/ it Vws = M Vos M Ll
Dk{\ V :(T ~ =T L] »
oS Vos O M Xy\ VOS> - (M noS) (M \/Q,>
& \\ N~
S Y
\/ — (M Tnos VN‘S ik
C— (=7
/ vget L wS
PN E 2SN (0 be unit length.

» Position, Direction, Normal

Position, Direction, Normal

 Position

— transformed by the full homogeneous matrix M
 Direction

— transformed by M except the translation component
* Normal

— transformed by M7, no translation component

+ L11: Ray Tracing
« Example

Today: Ray Tracing

(Indirec: =" " “.auon)

Reflecti
eflection® Refractions

—

.
'

Shadows
Pl o) 331/1:21:42

Shadows

Let's Think About Shadow Rays

* Do not need to find the closest %
intersection: 3
Any will do! |

But here's one simple
observation that can help.

Henrik Wann Jensen

» Soft Shadow

Soft Shadows

« Multiple shadow rays
to sample area light
source

one shadow ray
(to random location)

penumbra umbra
e .

is say, OK, well now our adew rays

light source takes up

» Reflection
» Perfect Mirror Relfection

Perfect Mirror Reflection

» Reflection angle = view angle @v = @,Q
— Normal component is negated

*R=V_2(V-NN B
e ' N view i
Y,
W
Nodma) Gnep. o(j v 5 . —
(| -V eN | N
VN
N

Pl) 26:1671:21:42

>

» Amount of Relrection

Amount of Reflection

 Traditional ray tracing (hackg
- Constar@ (9) i
= mbre

* More realistic:

— Fresnel reflection term (more reflection at grazing angle)
— Schlick’s approximation: R(8)=R,+(1-R,)(1-cos 6)°
» Fresnel makes a big difference!”

Reflectance
Rellectance
o o
" e -

R
|

N
ERRE £ 2 8

» Glossy Refection

Glossy Reflection

« Multiple reflection rays

Justin egakis

polished surface

I >l

1:06:01 / 1:21:42

) n»

» Refraction

Qualitative Refraction

Refraction

I =Ncos O, —Msin 6,
M =(Ncos O, —1)/sin 6,

T =—Ncos O, + M sin O

=—Ncos Oy + (Ncos ©,—1)sin O;/sin 6,

=—NcosO;+(Ncos O,-1)n,

=[7n,cos ©,—-cos O] N —n,1

=7, cos 6,— V1 —sin> 6,1 N —g,1
Snell-Descartes Law: =, cos 6,1 -5,sin> ©,]N - 5,1
=1[7,c086,—V1-5,7(1-cos? 6,) |N-7,I

n; sin 6; = ny sin Oy

=['Ir(N'I)—'Vl—"r2(l_(N'l)z)]N_”rl

a ' g) LS s
Vil Y (3

Antialiasing - Supersampleing

Antialiasing — Supersampling

« Multiple rays per pixel M Oﬁ
-~ &

Y rawY

w/ antialiasing

If we want to anti-alias
a pixel, all we have to do

Send more ray in the pixel, and average them

Motion Blur

Motion Blur MOZE RAyS

« Sample objects
temporally over
time interval

So this is like Rob Cook
simulating the fact Il

« Depth of Field

Depth of Field

out-of-focus blur

« Multiple rays per pixel:
sample lens aperture

out-of-focus blur

And so what can we do here?

(|| 0,
o) 1:13:30/1:21:42

« Recursive Ray Tracing

Hall of mirrors

Recursion For Reflection: 2

that I'm going to leave

L12: Accelerating Ray Tracing; bounding volumes, Kd trees
Distributed Ray Tracing

Distributed ray tracing

 Distributed Ray Tracing
L,
— Many rays for non-ideal/non-pointlike phenomena
FSoft shadows
* Anti-aliasing
* Glossy reflection

* Motion blur
* Depth of field
—_—

motion blur, depth of field,
and many other effects.

+ Bounding Volumes
« Conservative Bounding Volume

Conservative Bounding Volume

Check intersection with
conservative
bounding volume

« Early reject if ray
doesn’t hit volume

e)

of the bunny with the property
that every single vertex

» Ray-Box Intersection

Ray-Box Intersection Summary

* For each dimension,
— If Ry, =0 (ray is parallel) AND
R, <X, or R > X, — no intersection
For each dimension, calculate intersection distances t, and t,
- 4 =(X;-R) /Ry t,=(X3-Ro) /Ry,
- Ift; >t,, swap

— Maintain an interval [t ., t.,q], intersect with current
dimension

S .Iftl > tstart’ tstart - tl If t2 S tend’ tend — t2
Ifty,>tog — box is missed
o Ift,g<tnn — boxis behind
caalfs i:mrt > t.in — closest intersection at t,
el and the min of the n tlmes.

e Rav.Roy Infercection S1imman

Bounding Volume Hierarchies (BVH)

Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives

 Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

But there are still
a few challenges.

51

Pros and Cons

BVH Discussion

» Advantages
— easy to construct
— easy to traverse
— binary tree (=simple structure)

* Disadvantages
— may be difficult to choose a good split for a node
— poor split may result in minimal spatial pruning

« Still one of the best methods "

— Recommended for vour first hierarchy!

Kd-trees

Kd-trees

» Probably most popular acceleration structure
» Binary tree, axis-aligned splits
— Each node splits space in half along an axis-aligned plane

» A space partition: The nodes do not overlap!
— This is in contrast to BVHs

Construction

Kd-tree Construction

 Start with scene axis-aligned bounding box
Decide which dimension to split (e.g. longest)
* Decide at which distance to split (not so easy)

?\

» Traversal

Kd-tree Traversal, Smarter Version

Eget main bbox intersection from parent

tstan, fend

« Intersect with splitting plane
— easy because axis aliened

o) 47:24/1:09:50 - Data Structure >

Kd-tree traversal - three cases

Note: “Back” and
. “Front” depend on
o If t<tstarrt => intersect only back ray direction!

e If t>tend => intersect only front

tend

o) 48:15/1:09:50 - Kd-tree traversal - three cases >

Optimizing Splitting Planes

Optimizing Splitting Planes

* Most people use the Surface Area Heuristic (SAH)

— MacDonald and Booth 1990, “Heuristic for ray tracing
using space subdivision”, Visual Computer

* Idea: simple probabilistic prediction of traversal cost
based on split distance

» Then try different possible splits and keep the one
with lowest cost

 Further reading on efficient Kd-tree construction

— Hunt, Mark & Stoll, IRT 2006
— Zhou et al., SIGGRAPH Asia 2008

Pros and Cons

Pros and Cons of Kd trees

* Pros
— Simple code
— Efficient traversal
— Can conform to data

* Cons

— costly construction, not great if you work with moving
objects

Ray Marching: Regular Grid

Ray Marching: Regular Grid

AV o 4

Pros and Cons

Regular Grid Discussion

» Advantages?
— VCI'y €asy to construct
— €asy to traverse

* Disadvantages?
— may be only sparsely filled
— geometry may still be clumped

L13: Shading and Materials
Lighting and Material Apperance
Input for realistic rendering

Geometry, lighting and materials
Material apperance

Intensity and shape of highlights

Glossiness

Color

Spatial variation, i.e., Texture

Light Sources
Incoming Irradiance

Incoming Irradiance

* The amount of light energy received by a surface
depends on incoming angle
— Bigger at normal incidence, even if distance is const.

» Similar to winter/summer difference L
2 n <'O'>
* How exactly? o i
— Cos 0 law
— Dot product with normal
s
DVQ
that the two vectors
T— become orthogonal

Incoming Irradiance for Pointlights

e Let’s combine this the 1/r? fall-off:

. R . 5 : A
— I, is the irradiance (“intensity”) at I <ZQZ>
surface point x
— I}, 18 the “intensity” of the light

— 0 is the angle between light direction 1
and surface normal n

Directional Lights

Directional Lights

* “Point lights that are infinitely far”

— No falloff, just one direction and one intensity
\L/\/\ N i I

Lin, = Liight cos O

— I, 1s the irradiance at surface point x
from the directional light

— I}y, 1s the “intensity” of the light '
— 0 is the angle between light direction 1

and surface normal n the direction to the
* Only depends on n, not x! J[fs]piae(elXI oy A ETple

@
Pl) 1319/1:11:25

Spotlights

Spotlights

 Point lights with non-uniform directional emission

» Usually symmetric about a central vAg
direction d, with angular falloff

— Often two angles

‘Hotspot™ angle
E No attenuation within the central cone
+ “Falloff” angle: Light attenuates
from full intensity to zero intensity
between the hotspot and falloff
angles

* Plus your favorite distanc @RI o
falloff curve that hot spot region,

Quantifying Reflection - BRDF

Quantifying Reflection { RD)

» Bidirectional Reflectance
Distribution Function

 Ratio of light coming from one
direction that gets reflected in
another direction

— Pure reflection, assumes no 3£ anoming
I] irection
light scatters into the

direction

<

» Focuses on angular aspects, not
spatial variation of the

research papers, you'll see
* How many dimensions JTE¥e RN (s R (E (011

BRDF f.

» Bidirectional Reflectance
Distribution Function

Li 4D: 2 angles for each direction

BRDF mi ; 90, ﬂ ! O

— Or just two unit vectors: by
BRDF =f (1, v) %}
* 1 = light direction

F-
@
-

"

* v = view direction 0;].-. 80
— The BRDF is aligned [l
with the surface; L ST - -
the vectors 1 and v must il Pl
be in a local coordinate system

BRDF f.

« Relates incident irradiance from | = light direction

every direction to outgoing light. (incoming)
How? v = view direction

(outgoing)
Iout(v) = Lin(1) fr(v,1)

» Let’s combine with what
~_we know already of pointlights:

Iout ('U) — g G‘i‘ eo

>

Liont COS 6;
igh) ~ fr(v,1) t= i S

r

Obtain BRDF

How do we obtain BRDFs?

* One possibility: Gonioreflectometer
— 4 degrees of freedom

D
i /?l}

Sowurce Driver Hoop

Source: Greg Ward

Transmittance Detector

Parametric BRDFs
Ideal Diffuse Reflectance

|deal Diffuse Reflectance

* Ideal diffuse reflectors reflect light according to
Lambert’s cosine law

— The reflected light varies with cosine even if distance to
light source is kept constant

Remembering that incident irradiance depends on cosine,
what is the BRDF of an ideally diffuse surface?

Lambert's Cosine Law

N\ \\\\\ i s M =
according to this cosine law.

Ideal Diffuse Reflectance
e The ideal di

se BRDF is a constant
— What constant p/m, where p is the albedo
* Coefficientbetween 0 and 1 that says what fraction is reflected

— Usually just called “diffuse color” &,

— You have already implemented this by taking dot products
with the normal and multiplying by the “color™!

Lambert's Cosine Law

not just one value of rho

» Albedo = 0, Absorb all light, Albedo increse, more light relfected
+ Math

|deal Diffuse Reflectance Math

* Single Point Light Source L,=
— k;: diffuse coefficient (color) L;
— n: Surface normal. kd ma,x(O, i l) iy
— I: Light direction.
— L;: Light intensity
— 1: Distance to source

— L,: Shaded color [ﬁ 7
We do not want light from below the

Do not forget
to normalize

) 36:30/1:11:25

Non-ideal Reflectors

Non-ideal Reflectors

» Real glossy materials usually deviate significantly
from 1deal mirror reflectors
— Highlight is blurry

* Not ideal diffuse surfaces either

But we can do it by doing a
bit of empirical reasoning.

The Phong Specular Model

The Phong Specular Model

V5% L;
Lo = ks(cosa)? r—; =ks(v-1)!—

* Parameters
— k;: specular reflection coefficient

— g : specular reflection exponent n
r -

a \ “1
\Q a
\"

But it does capture material of

' some shininess somewhat well. |

if a = 0, then reflect all light

g: how sharply it drop off

The Phong Specular Model

+ Effect of ¢ — the specular reflection exponent

(o &)

a=-—7/2

Ambient lllumination

Phong lllumination Model

Putting It All Together

* Phong Illumination Model

Lo= [ka+ka(n 1) + ks (v 7)1
BN

s §

Phong| P mcu Paitvene Repeceter Prcest

4-of W
| @

\

L;
i

6=0
o

And so the Phong Illlumination
Model essentially

Phong Example

Phong Examples

* The spheres illustrate
specular reflections as
the direction of the

light so (. and the
exponeount of
shininess)is varied.

Lo = [ka+ka(n 1) + ks (v r)]

. |

e

) 48:52/1:11:25

Fresnel Reflection

Fresnel Reflection

* Increasing specularity near grazing angles.
— Most BRDF models account for this.

Pl) 50:10/1:11:25 "

Blinn-Torrance Half Vector Lobe that support fresnel relfection

Blinn-Torrance Variation of Phong

» Uses the “halfway vector” h between I and v.

\/-_/\/
/9%
Lo = ks cos(8)? — k\\
"

Camera

Microfacet

Microfacet Theory

« Example
— Think of water surface as lots of tiny mirrors (microfacets)
— “Bright” pixels are
» Microfacets aligned with the vector between sun and eye

* But not the ones in shadow
* And not the ones that are occluded

P N54i49 / 1:11:25

Microfacet Theory

« Value of BRDF at (L,V) 1s a product of

— number of mirrors oriented halfway between L and V
— ratio of the un(shadowed/masked) mirrors
— Fresnel coefficient

N

Ao axh oAb o 4 _ _

Other BRDF Example

BRDF Examples from Ngan et al.

Lighting

is take a sphere and coat it
with a particular material

) 1:01:18/1:11:25

Phong Normal Interpolation

Phong Normal Interpolation =~ "o

Shading)

* Interpolate the average vertex normals across the
face and use this in shading computations

— Again, use barycentric interpolation!

HTW// \i1//

/ /

Zall
—f

//1\\\

This is just a kind SRS
of common trick. ks

Spatial Variation

Spatial Variation

 All materials seen so far are the same everywhere

— In other words, we are assuming the BRDF is independent
of the surface point x

— No real reason to make that assumption
— More next time

o) ST

the surface.

L14: Textures, parameterization, shaders, Perlin noise

Spatial Variation

Two Approaches

* From data: texture mapping

— color and other information
from 2D images

* Procedural: shader

— little programs that compute
info as a function of location

frequency ignal.

Texture Mapping

Effect of Textures

or the amount of detail in
this mesh is pretty low.

Texture Mapping

3D model Texture mapped model

And so essentially, this was JilEER

the really key breakthrough

» UV Coordinate

TeXtU re Mapping Image: Praun et al.

Need to associate
each surface point
with a 2D coordinate
in texture map

Texture
mapped model

S : e ‘.
o). 13:27 /11 440" Texitre Mapping >

UV Coordinates

W WY driaade
« Each vertex P stores Zb (u, v) “texture coordinates”

— UVs determine the 2D location in the texture for the vertex
— We will see how to specify them later

» Then we interpolate using barycentric coordinates
(U, Vo)
[
(augtBustyus,
avg+Bvy+yvs,)

i) G2V

» Rendering Textured Triangles (Texture Lookup)

Rendering Textured Triangles

Texture Interpolation

Texture Interpolation

And that is what's creating this
nice shading in the background

Zoom far away, Pixel color too random

Texture Can Be Too Detailed

Large texture

Small image

Ap

in ray tracing where
we send multiple rays.

>l 49 25:07 / 1:14:11 - Texture Can Be Too Detailed >

MIP Maps

MIP Maps

119 25:23 /1:14:11 - Texture Can Be Too Detailed >

Precompute small images when it is far away
How to Obtain UV Coordinates

How to Obtain UV Coordinates?

» Per-vertex (u, v) “texture coordinates” are specified:
—>— Manually, provided by user (tedious!)
—>— Closed-form formulas

* — Automatically using parameterization optimization

(Uos Vo)

Bl) 2735/1:1411 - MIP Maps >

Manual
Slide from Epic Games

Creatmg Trso Portion in Max

“rHehGTE N oBo

in just a smooth set of .
coordinates in between,

3D iviogei ; UV-Mapping
Pl) 2839/1:14:11 - Slide from Epic Games Creating Torso Portion in Max >

Artist design key point in the texture
Closed-Form Mapping

Closed-Form Mapping

Planar

Planar

— Vertex UVs and
linear interpolation
is a special case!

Cylindrical
Cylindrical

Spherical

Perspective
Projection

o
Spherical
' like spheres and
Spherical cylinders, there
]

Raycast get height and angle, calculate the shape and get
uv

» Projective Mappings

Projective Texture Example

» Image-based rendering: Modeling from photographs
» Using input photos as textures

Original photograph with Revovered model Madel edges projected
marked edges

ooto photograph

Figure from De ; ;
il And one nice thing about
Berkeley architecture—

» Optimization Approach

Optimization Approach

* Goal: “flatten” 3D object onto 2D UV coordinates

* For each vertex, find coordinates U,V such that
[distortion 1s minimized

— distances in UV correspond to distances on mesh

— angle of 3D triangle same as angle of triangle in UV plane

* Cuts are usually required (discontinuities)

s Lhat distortion is minimized.

Barycentric Parameterization

Barycentric Parameterization Advanced

Parameterigétion

i
" \Goal: Assign (u,v)
7 «<—— coordinate to
A y each mesh vertex.
: N ¥ ne nws
Pg;(u.,v) co aF s of boundary.)
Want interior vertices to be at the (ba)center of

their neighbors: @‘
’(/\)'H-e/ (2,3) nelghbor
Qn?? system of equations!

Research in Parameterization

L 09.png

(ae/a(a.//

Octopus ~ Vertex #:3002 by=41

E,=85

0

Output: E;=4.097, E;=15319 Time: 282.7s

Li, Kaufman, Kim, JS, and Sheffg for obtaining a. ptimization of
Surface Cuts and Parameterization LU (ZIEI R S8, Tokyo.

« Texture Tiling
Note the range (0,1) unlike

TeXtU re Tl I | ng normalized screen coordinates!

* Specify texture coordinates (u,v) at each vertex — . -

« Canonical texture coordinates (0,0) — (1,1) -z -

— Wrap around when coordinates are outside (0, l')7_ Sl
A

.

1 bl 7 —Y e
; . » — ' 9, »,")
: : : . &)
L e -_ : -_) o > . » . g
2 e 2 = 2 . NL DL Ve &
~=0,0) : tgmmp

o) 46:56/1:14:11 - Texture Tiling normalized screen coordinates!

« Texture Mapping & lllumination

Texture Mapping & lllumination

+ Texture mapping can be used to alter some or all
of the constants in the illumination equation
— Diffuse color £, specular exponent g, specular color k...

— Any parameter in any BRDF model!

Lo = [y €m0 €10 1)) &

— k, in particular is often read from a texture map

oy N N

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color

Gloss Mapping Example

Ron Frazier

Spatially varyin o" and K,

Normal Mapping

Normal Map Example

N O rm a I M a p Exa m p I e Models and images: Trevor Taylor

Normal Map

Diffuse texture k,

Final render

Generating Normal Maps

Generating Normal Maps

* Model a detailed mesh
[TR o N it
Generate W

— Need: Each 3D point has unique 1ma§e>é)ordmates in
the 2D texture map

— Difficult problem, but tools available " ' / Cony
* E.g., DirectX SDK
Sg‘mplify ’m_éwh

Overlay simplified and original model

For each P on the simplified mesh, find closest P’
on original model (ray casting)

X

Store normal at P’ in the normal map.

Make a detailed mesh

Generate UV normal map based on detailed mesh
Simplily the mesh

Use the simplified mesh with normal map

» Procedural Textures: Shader

Procedural Textures

 Alternative to
texture mapping

* Little program that
computes color as a
function of x,y,z:

f(x,y,z) —>color

Image by Turner Whitted

And so this can be useful.

» Shaders

Shaders ¥

T e

* Functions executed when light interacts with a
surface

* Constructor:
— set shader parameters
 Inputs:
— Incident radiance
— Incident and reflected light directions
— Surface tangent basis (anisotropic shaders only)
— (Sometimes) texture map

o
— Reflected radiance idea is a shader.

Shader

* Initially for production (slow) rendering
— Renderman in particular

« Now used for real-time (games)
— Evaluated by graphics hardware
— More later!

» Often makes heavy use of texture mapping

language called GLSL, and your

graphics hardware actually

Pros and Cons

Procedural Textures

» Advantages:
— easy to implement

— more compact than texture maps
(especially for solid textures)

— infinite resolution

» Disadvantages
— unintuitive
— difficult to match existing texture

about a texture map,

but rather, maybe gets

Perlin Noise

[Perlin Noise |

* Critical component of
procedural textures

* Pseudo-random function
— But continuous Ken Perlin
— |band pass|(single scale)

» Useful to add visual detail

the next couple of slides.

Requirements

Pseudo random
For arbitrary dimension
4D is common for animation

Smooth at prescribed scale

Little memory usage

1D Noise

1D Noise

0 at integer locations

* Pseudo-random derivative (1D gradient)
at integer locations
— define local linear functions

* Interpolate at location P %
noiserp 2 VAV 0\}%)"e

value 2 4%6;;4% (H erunte)

Use spline

Reconstruct at P

1D Noise: Reconstruct at P

« Compute the values from the two neighboring
linear functions: n;, =dx -G, n, = (dx—1) -G,
» Weights
w, = 3dx?-2dx3 and w, =
3(1-dx}2- 2(1- dx)3
DY : noise \yvl G1 dx -\{-, w2 G, (dx—1)

value

J two zero values and two sIopes

417711417 - Fain No

Perlin Noise in 3D

Algorithm in 3D

* Given an input point P

* For each of its neighboring grid points:
— Get the "pseudo-random" gradient vector G
— Compute linear function (dot product G-dP)

» Take weighted sum,
using separable cubic
weights

point in the interior
of our domain here

Compute perlin noise

Computing Pseudo-random Gradients

» Precompute (1D) table of n gradient@
* Precompute (1D) permutation P[n]
* For 3D grid point i, j, k :

G(ijk) = G[(i + P[G+ P[k]) mod n]) mod]
TN i AP M=

* In practice onl@adients are stored!

— But optimized so that tlW\EINE R CE] €d
at some of the magic

Example

Noise At One Scale

. . .
» A scale is also called a octave) in noise parlance

fy,D

we call this an octave.

Noise At Multiple Scales

» A scale 1s also called an octave in noise parlance

 Usually use multiple
octaves, where scale
between octaves

3 \
is multiplied by 2 ‘ _ " ‘
:'.;’L

that just showed that this one
simple trick for generating

sum 1/f |noise|

» Absolute value introduces C! discontinuities

* a.k.a. turbulence

but every once in a while,
they have some point

sin (x + sum 1/f|noise])

* Looks like marble!

using a few lines of code
in the Perlin noise setup.

Comparison

Comparison

*noise sin(x + sum 1/f{ |noise|))
2 AN
3 N

For solid Textures

Noise For Solid Textures

* Marble

— recall sin (x[0] + sum 1/f|noisel)

— BoringMarble = colormap (sin(x[0])
— Marble = colormap (sin(x[0]+turbulence))

* Wood

—replace x (or parallel plane)
by radius

Fur

Other Cool Usage: Displacement, Fur

L15: Antialiasing; Sampling and Reconstruction
Example of Aliasing

Examples of Aliasing

=

Original Image Samples Reconstruction

e

Smool].

P— have your finite pixel grid.

Aliasing appears as jagged edges, moiré patterns, or incorrect details.

Sampling vs Quantization

Sampling vs Quantization

} \) o \/ I = _/ \/ N
M) .
e § ,.-».’.“\
\\ =3 ®
_
X | sampling

i —Q today

Sampling

Mapping a continuous function to a discrete one

Sampling Density

Sampling Density

» Insufficient sampling makes high frequencies look like
low frequencies (“aliasing™)

» Origin of name: the new low-frequency sine wave is an
alias/ghost of the high-frequency one

£ O e e
wndersampled be a low-frequency function.

Quantization
Mapping a continuous function to a discrete one

» Pixel

What 1s a Pixel?

* A pixel is not:

— abox -
— adisk
— a tiny light 5

* A pixel “looks different” on | e

different display devices
« A pixel is a sample
— 1t has no dimension
— 1t occupies no area
— 1t cannot be seen
— 1t has a coordinate
— it has a value

———e

- A0 2-1) Al . o

+ Reason of Aliasing

Sampling & reconstruction

0/ Visible light is a continuous function

1/ Sample it
— with a digital camera or ray tracer Lr 504

— QGives a finite set of numbers: discrete
z_/

2/ Reconstruct a continuous function
— for example, the point spread of a pixel on a CRT or LCD

* Both steps can create problems
— pre-aliasing caused by sampling
— post-aliasing caused by reconstruction

Insufficient Sampling
Make high frequencies look like low frequencies)Aliasing

VndersamyleJ
21

Step 1: Sample the Function (Red Arrow)

Sampling

A

that we just didn't capture
with our sampling procedure.

Step 2: Reconstruct a continuous Function (Purple Line)
which is different from original green line (data loss)

» Solution

Solution?

» How do we avoid that high-frequency patterns
mess up our image?

e Blur or oversample!
— Audio: include analog low-pass filter before sampling

— Ray tracing/rasterization: compute at higher resolution,
blur, resample at lower resolution (or multiple rays/pixel)

— Textures: blur the texture image before doing the lookup

* To understand what really happens, we need

SETTOUS T1atin

27:04/1:28:01 - Solution? >
« Blue or Oversample
« Theoretical
» Fourier Transform: For perfect reconstruction

Fourier Transform

THEOREM(-ISH).
Most functions
can be written as
combinations of
sines and

‘9 35:38//'1:28:01 = Worst Possible Example >

« Any function can be combination of sin and cosina function

Transform the Image into the Frequency Domain

Fourier Transform

f(aW ‘S’/aﬁa/

F[] NS I}" sl

o) 37:02/1:28:01 - Worst Possible Example >

Apply a 2D Fourier Transform (e.g., Fast Fourier
Transform, FFT) to the image.

This decomposes the image into its frequency
components, where low frequencies represent
smooth variations and high frequencies represent
sharp edges and details.
Take dot product with the Fourier and the original
function

Evaluating Fourier Transform

s (mE%)
)

ISR

Multiply and integrate.

N € a s 2y a0
W) 43:381/)1%28:01 ', BVAIGAtNG\Foutis AransTorm >

Tell how common (similarity) are they

Definition of Fourier Transform

Definition of Fourier Transform

= / f(z)e*™*¢ dx

/ f(x)[cos(2mx€) + isin(27x)] dx

V\W

The value of this integral for all C.

How much is the frequency hiding in Orignal Function F(x)

f(x)[cos(2mx)

Cosine is the real part of the Fourier

By taking dot product

Sine is the imaginary part
Nyquist rate

Nyquist rate
[nahy-kwist reyt]:

The lowest alias-free
sample rate; two times
the bandwidth of a band-

Ilmlted Slgnal @ This is the lowest

alias-free sample rate.

58:21/1:28:01 - When Isn't This a Problem? >

©

Convolution Theorem

Convolution Theorem

Multiplication in frequency
domain is convolution in

spatial ¢ d

is that Fnultiplic.:ation
in the frequency domain-

A Perfect Story
(% s f({‘j) fbf) g ?:9‘ Satlx =)

Spatial domain

Frequency domain

LR 7N 7N
b Al 2llES LA

is actually perfect.

Not pratical
because practical signals cannot have finite bandwidth.

Neagtive lobe
Ifinite extent

Sharp edges miss (Miss of High Frequency)

Back to Reality: A third issue

Sharp edges
need special
treatment!

In Practice
Supersampling Anti-Aliasing (SSAA)

In practice: Supersampling

* Intuitive solution: compute multiple color
values per pixel and average

jaggies w/ antialiasing

The idea here being that if |
think of my pixel like a box,

average the color in the pixel

Uniform supersampling

Uniform supersampling

« Compute image at resolutio@widt@height

* Downsample using low-pass filter
(e.g. Gaussian, sinc, bicubic)

“ v o B
. Should | weight them all evenly?

Low pass / convolution

* Output pixel is weighted average of subsamples
* Weight depends on spatial position

» For example:
— Gaussian as a function of distance
— 1 inside a square, zero outside (box)

kS
-~
kS

NS
4

e
= o X

sort of centér'éd at the middle

3l-
-l
2

16| 26| 16

 Better interpretation of same idea:
— First create a high resolution image

— Blur (low pass, prefilter)
— Resample at a lower resolution

W g = QO [

1R L3

with one sample per pixel, blur
it out using some weighting, C

PR 00 bt | OO b i [0O bt

©

1:09:53/1:28:01 - Convolution >

Recommended filter

Bicubic (piecwise polynomial): Sinc approximation
Advantages:

Capture hight frequencies

Downsampling can use a good filter

Works well for edges
Issues:

Frequencies above supersampling limit still aliased

Not good for repetitive textures

Uniform supersampling

* Problem: supersampling only pushes the proble
further out; signal is still not bandlimited

 Especially if signal and sampling are regular

start making use of perception,

W) 112:32/1:2801 - Convolution >

Jittering

Jittering

 Uniform sample + random perturbation
 Signal processing gets more complex

* In practice, adds noise
— But noise is better than aliasing!

N\.«".ﬁ
V’:w"#

o‘" .\" ho f spacing, to make sure that
we capture high frequencies.

Jittered supersampling

1 sample / pixel

2 sample / pixel

| o) 1:14:28/1:28:01 - Convolution >

Magnification: Linear Interpolation

Magnification: Linear Interpolation

» Use a tent filter instead of a box filter.
» Magnification looks better, but blurry

rather than having
piecewise constant data,

W).1:16:49 £ 1:28:01_._Convolution >

Minification

Minification

MIP Mapping

MIP Mapping

* Construct pyramid
of images that are
pre-filtered and
re-sampled at
1/2, 1/4, 1/8, etc.,
of the original
sampling

* During rasterization compute index of decimated image sampled
at rate closest to desired sampling rate

» MIP stands for multum in parvo which means

many in a small place
but we also store one
that's half as wide, il

Example

MIP Mapping Example

MIP Mapped (Bi-Linear)
don't have to send a lot

of rays into a pixel,

Nearest Neighbor

91

Drawback

Anisotropy & MIP-Mapping

« What happens when the surface is tilted?

Nearest Neighbor

And the reason for that is that
every MIP map is just uniformly

Fix with Elliptical Weighted Average

Elliptical weighted average

* Isotropic filter wrt screen space

N T 7

Becomes anisotropic in texture

space /
* e.g. use anisotropic Gaussian o s
* Called Elliptical Weighted

Average (EWA) N

screen

AR

and then
Uil color from your MIP map

Image Quality Comparison

* Trilinear mipmapping

33

trilinear mipmapping
that the elliptical

weighted average

Subpixel rendering /ClearType for Text

Subpixel rendering/ClearType

and each pixel on our screen§
gets an R, a G, and a B value.

https://upload.wikimedia.org/wikip®a

Control the subpixel (RGB)

L16: Global lllumination and Monte Carlo
Reason of Gl
Does Ray Tracing Simulate Physics?

Does Ray Tracing Simulate Physics?

» Ray tracing is full of tricks and approximations

* For example, shadows of transparent objects

— Multiply by transparency color?
(ignores refraction & does not produce caustics)

No, It is backward ray tracing

« lot of physical

« Correct Transparent Shadow

Correct Transparent Shadow

 Using advanced refraction technique
(photon mapping)

Forward Ray Tracing

“Forward” Ray Tracing

« Start from the light source: Shoot lots o@noton@

— Very, very low probability to reach the eye/camera!

 What can we do about it?

— Difficult inverse problem: Where to send photon so that it
will reach a particular pixel

N\

o

—

AW W LW &Y AV & 4

Global [llumination

Global lllumination

» So far, we've seen only direct lighting (red here)

« We also want indirect lighting
— Full integral of all directions (multiplied by BRDF)
— In practice, send\tons|of random rays
p Y:l y

Example:
Current Ray Tracing (Direction Light)

Direct lllumination Corell bx

| ‘D 10:39/1:19:11 - Does Ray Tracing Simulate Physics? >

Global lllumination (Indrect Lighting)

Global lllumination (with Indirect)

%

it's bluish.
—- ——

| o) 11:48/1:19:11 - Does Ray Tracing Simulate Physics? > nl

Rendering Equation

« Reflectance Equation

Reflectance Equation, Visually

G, Y
WO

N‘\‘“
Lout(>Lc, \f) = / Ly (D) fr(x,1,v) cos @ dl

outgoing light to
direction v

incident light the BRDF cosine term

from direction
omega

B g Lin
i i Sum (integrate)

over every
direction on the
hemisphere,
modulate incident
illumination by
BRDF

Pl o) 1416/1:19:11 - Reflectance Equation, Visually >

The Rendering Equation

N
Lout(ic,vl / in(D) fr(x,1,v)cos@dl

+Eout (X7 V,

* Where does Lin come from?

— Light reflected toward x from the surface point in
direction /: must compute similar integral there
* Recursive!

— And if x happens
to be a light source, of a surface at location

we add its contribution & X in direction v

17:13/1:19:11 « The Rendering ion >

« Path Tracing
» Monte Carlo intergration

+ Monte-Carlo Ray Tracing

“Monte-Carlo Ray Tracing”

* (Cast a ray from the eye through each pixel

* (Cast random rays from the hit point to evaluate
hemispherical integral using random sampling

Let's call that place x.

» Result

Results

Henrik Wann Jensen

well, the image is
really noisy, especially

* very noisy

Monte Carlo Path Tracing
Monte Carlo Path Tracing

» Trace only one secondary ray per recursion
— Otherwise number of rays explodes!

» But send many primary rays per pixel (antialiasing)
One varal) ¢
Jr i -

f‘? é N\).»\ G-')l)})
M—\-—fr’

k
1&-» b i f(é b

Trace only one reflected ray (Random) per time
And do the Trach Path n times for every pixel, randomize the color

10 paths/pixel
Path Tracing Results: Glossy Scene

* 10 paths/pixel

More noise! Integrand has higher variance.

1
-

Let's think for a minute.

enrik Wann Jensen

100 paths/pixel
Path Tracing Results: Glossy Scene

* 100 paths/pixel

P
o

were seeing before, are
starting to go away.

enrik Wann Jensen

Irradiance Caching

Irradiance Caching

 Store the indirect illumination
* Interpolate existing cached values
» But do full calculation for direct lighting

Well, | have to store the

for better optimization
Store the value of that point for nearyby usage

Photon Mapping

Photon Mapping

* Preprocess: cast rays from light sources, let them
bounce around randomly in the scene

* Store “photons™

—
; N\ vl o /'j
So in photon mapping, rendering

Photon Mapping - Rendering

* Cast pduw +— 6?2
* For secondary rays
reconstruct irradiance using adjacent stored photon

—~ Take the k closest photons

* Combine with irradiance caching and a number of other techniques

O (o)

Shooting one bounce of

o)
m ~ secondary rays and

o o 0 o) using the density

= ° o o approximation at those
-4 © o hit points is called final
. JL T P athering
O .
°llo o © o R
(=] b~ o
o (@) (=] ANC - a
o — ep O aybe one balance
(=] o o —
- — .

hoton Map Results

Mons

a pretty effective technique for a

More Global lllumination
Onhter Topic: Monte Carlo Integration
for average the results

Better sampling
Importance sampling

Smarter Sampling

Sample a non-uniform probability
Called “importance sampling™

Intuitive justification: Sample more in places where there are
likely to be larger contributions to the integral

to cast a bunch of rays in
the direction where I'm not

biased sampling

More Sampling at more lighing area

Sa m pl I n g a B R D F Slide courtesy of Jason Lawrence

5 Samples/Pixel

(1)0\\% i,
2 .\
oy N
P((Di) / :

xS *

And one thing that

you can see is

Math

Importance Sampling Math

/f Vol Zf

* Like before, but now {xi} are not uniform but drawn
according to a probability distribution p
— Uniform case reduces to this with p(x) = const.

* The problem is designing ps that are easy to sample
from and mimic the behavior of f

It turns out that if you want

to do importance sampling,

Divede by the likelihood p(xi)
High propability (for sampling) gonna be low weight because it gonna
be averaged together in small space

Example

CXdInpice

Stratification

Stratified Sampling Analysis

* Cheap and effective

* But mostly for low-dimensional domains

— Again, subdivision of N-D needs N¢ domains like
trapezoid, Simpson’s, etc.!

« With very high dimensions, Monte Carlo is pretty
much the only choice

L17: Rasterization
Ray Casting vs. GPUs for triangles

Ray Casting vs. GPUs for Triangles

Ray Casting GPU
For each pixel (ray) For each triangle
For each triangle For each pixel
Does ray hit triangle? Does triangle cover pixel?
Keep closest hit Keep closest hit
Scene

"Inverse-Mapping" approach primitives "Forward-Mapping" approach

Q .
o Pixel raster

Scene
primitives

11
11
A Pixel raster
q

Ray casting

Draw 1 pixel at a time
GPU

Draw 1 trangle at a time

Different Order

Ray Casting vs. GPUs for Triangles

Ray Casting GPU
For each pixel (rayl:::>‘::::fr each triangle
For each triangle For each pixel
Does ray hit triangle? Does triangle cover pixel?
Keep closest hit Keep closest hit

It’s just a different order of the loops!

GPU-based rendering is just a
different order of for loops

~

Main Difference

What are the Main Differences?

Ray Casting GPU
For each pixel (ray) For each triangle
For each triangle -><> For each pixel
Does ray hit triangle? Does triangle cover pixel
Keep closest hit Keep closest hit
Ray-centric Triangle-centric

* In this basic form, ray tracing needs the entire
scene description in memory at once

» Rasterizer only needs one triangle at a time, plus the
image and depth information for all pixels

Ray tracing need the entire scene in memory
Rasterizer only need one triangle at a time, and the image and depth

Rasterization use less memory

GPU Rasterization Overview

GPUs do Rasterization
GPU

* The process of takinga |~ .
triangle and figuring out| ror each pixel
which pixels it covers is Does triangle cover pixel?
called rasterization Keep closest hit

* Can accelerate
rasterization using
different tricks than ray
tracing

"Forward-Mapping" approach

Pixel raster

Scene
primitives

o

IS
fuiul
1

1
What rasterization actually do (Scan Conversion)

Rasterization (“Scan Conversion”)

« Given a triangle’s vertices, figure out which pixels to
“turn on”

* Compute illumination values to fill in pixels within the
primitive

)
»

c.].l‘.

a4
} L3

*
<l
*

At
-
-
-

A2 B2 Ad B

-
a
-
>
-

slvfelelr
s elefe]le

» At each pixel, keep track of
the closest primitive (z-buffer)

— Only overwrite if triangle being
drawn is closer than the previous
triangle in that pixel

AR R RS B

*
T

AR AR R AR R AR R R

AR AR AR RARARARE RE B

L Bd

-
-

']""7"""'

slelele|e]o]e]e]]s]s]++
L]
N
"’1°’
0?\ slelelelele]e]e]e]le]+

rir|r|r
lee]

- Sl sl ie
w8 e]s]e]e]e]e|e]e]s]~

z-buffer
determine the depth of the traingle, only show the closest one

Rasterization Pros

Rasterization Advantages

* Modern scenes are more complicated than images

— A 1920x1080 frame (1080p) at 64-bit color and 32-bit
depth per pixel is 24MB (not that much)

+ If we have >1 sample per pixel this gets larger, but e.g. 4x
supersampling is still a relatively comfortable (~100MB)

— Our scenes are routinely larger than this
vm}/ud\;rgé

» Rasterization caver the triangles, no need

to keep entire dataset around
— Allows parallelism and optimization of memory systems

use less memory

Rasterization Cons

Rasterization Limitations

» Restricted to scan-convertible primitives
— Pretty much: triangles

 Faceting, shading artifacts
— Going away with programmable ‘
per-pixel shading
* No unified handling of
shadows, reflection,
transparency

* Overdraw (high depth
complexity)

— Each pixel touched
many times scan conversion scan conversio
flat shading gouraud shading

ray tracing

Modern Graphics Pipeline

Modern Graphics Pipeline

* Input
— Geometric model
* Triangle vertices, vertex normals, texture coordinates

— Lighting/material model (shader)

+ Light source positions, colors, intensities
* Texture maps, specular/diffuse coefficients

— Viewpoint + projection plane

* Output
— Color (+depth) per pixel

Colbert & Krivanek

Procedure
Step 1: Project vertices to 2D

Modern Graphics Pipeline .

* Project vertices to 2D y N
(image) 7)

 Rasterize triangle: find
which pixels should be lit

« Compute per-pixel color

 Test visibility (Z-buffer), . T
e n ‘..

update frame buffer colop PR o) [
vertices onto the image.

Step 2: Rasterize triangle: find which pixels shoud be it

Modern Graphics Pipeline - .

* Project vertices to 2D
(image)

+ Rasterize triangle: find
which pixels should be lit
— For each pixel,
test 3 edge equations
« if all pass, draw pixel

« Compute per-pixel color
* Test visibility (Z-buffer) SR UEEUEEIE
update frame buffer color KIS ,,

s ;S HHEF

Step 3: Compute per-pixel color
Step 4: Test visibility, update frame buffer color

e

)

Modern Graphics Pipeline - -

Perform projection of vertices

Rasterize triangle: find which
pixels should be it

Compute per-pixel color
Test visibility, -
update frame buffer color

— Store minimum distance to camera
for each pixel in “Z-buffer”

 Similar to 7,,, in ray casting SR
VAN
" if newz < zbuffer|([x,y]

zbuffer([x,y]l=new_z frame buffer Z buffer
framebuffer([x,y]=new color

) 23:05/1:12:40

Double-buffer

show the current frame, prepare the next frame in another buffer, then flip
the buffer back and forth.

Psudo code

Modern Graphics Pipeline .

For each triangle g %X” i
| transform into eye space

(perform projection)
fsetup 3 edge equations
/}or each pixel X,y
if passes all edge equations

(compute z
if z<zbuffer(x,y]

zbuffer(x,yl=z
& framebuffer[x, y]=shade ()

NOW i 90N = ==Ta
Step in details
Projection vertices to 2D
Prthographic vs. Perspective

Orthographic vs. Perspective

* Orthographic 4

y

 Perspective

use they
wangles to triangles

Perspective

Basic |dea: store 1/z

2\ (000 [
= tooont 2] =10
WRTHATARY

h } f

» 2z’ =1 before homogenization

* z’=1/z after homogenizatio But this is still a

three-dimensional coordinate

Full Idea: Remap the View Frustum

* We can transform the frustum by a modified
projection in a way that makes it a square (cube in
3D) after division by w’.

view frustum
(visible part of the scene)

iewpoint

when you do that because
you replace z with 1/z.

The Canonical View Volume

z=1

X =-1 x=1

* Gives screen coordinates and depth values for
Z-buffering with unified math

OpenGLﬂﬁ}orm of the Projection

z' 1 0 0 0 T

Y 0 1 0 0 Y

Z/ T 0 0 ffu:-{-lmfu: L 2*'=fz.1r*n?m‘ >
far —near far—near

w’ 0 0 1 0 1

» z’=(azt+b)/z =at+b/z
— where a & b depend on near & far

* Similar enough to our basic idea:

- 2'=1/z z’ 1 0 0 0\ [z
o IR (| O Y) O y
Z1 (0 0 0 1 z
w’ OQamDanlenf) 1

[~e

Rasterize triangle+ find which pixels shoud be lit

2D Scan Conversion

2D Scan Conversion

* Primitives are “continuous” geometric objects;
screen is discrete (pixels)

 Rasterization computes a discrete approximation in
terms of pixels (how?)

But it turns out that
smenting rasteri
Edge Functions

Edge Functions

* The triangle’s 3D edges project to line segments in
the image (thanks to planar perspective)

* The interior of the triangle is the set of points that is
inside all thrge half-spaces defined by these lines

CEZ'(:E) y) oy
a;x + by + ¢;

(x,y) in triangle

Easy Optimization

Easy Optimization

* Improvement: Scan over only the pixels that overlap
the screen bounding box of the triangle

* How do we get such a bounding box?
— X Xmaxs Ymine Ymax OF the projected triangle vertices

min? “*max®> * min®> * max

But that isn't always
the best thing to do.

Hierarchical Rasterization

Indeed, We Can Be Smarter

» Hierarchical rasterization!

— Conservatively test blocks of pixels before

going to per-pixel level (can skip large blocks at once)
— Usually twolevels

Conservative tests of

......

Andweregoingtodad

axis-aligned blocks vs.
edge functions are not
very hard, thanks to
linearity. See Akenine-
0 Journal
S$Dis 10(3

» cc

« Clipping
Clipping

+ Eliminate portions of objects
outside the viewing frustum

* View Frustum

— boundaries of the image

plane projected in 3D left

— anear & far
clipping plane

* User may define
additional clipping

planes
iy

« Frustum Culling

Related |dea

bottom

| guess it's a little dark.

* View Frustum Culling

— Use bounding volumes/hierarchies to test whether any
part of an object is within the view frustum
* Need “frustum vs. bounding volume” intersection test
* Crucial to do hierarchically when scene has /ots of objects!
« Early rejection (different from clipping)

See e.g. Optimized view

frustum culling
algorithms for bounding

boxes, UIf Assarsson
and Tomas Modller,
Journal of Graphics
Tools, 2000.

efficient.

Homogeneous Rasterization

Homogeneous Rasterization

* Idea: avoid projection (and division by zero) by
performing rasterization in 3D

— Or equivalently, use 2D homogenous coordinates
(w’=z after the projection matrix, remember)

* Motivation: clipping is annoying

* Marc Olano, Trey Greer: Triangle scan conversion
using 2D homogeneous coordinates, Proc. ACM
SIGGRAPH/Eurographics Workshop on Graphics

Hardware 1997 we avoid it by doing a
different trick, which is

Homogeneous Rasterization Recap §

 Rasterizes with plane tests instead of edge tests
* Removes the need for clipping!

1

{ /

{ 2D pixel
{ . (', y', 1)
1

3D triangle

before you do your

rasterization.

Compute Per Pixel Color
Pixel Shader
Test visibility, update freame buffer
Painters algorithm
Draw 1 obj at a time
Z buffer

distance to camera

Z buffer

* In addition to frame buffer (R, G, B)
« Store distance to camera (z-buffer)
N

* Pixel is updated only if newz is closer
than z-buffer value

L18: Rasterization IlI: Z buffer, rasterized antialiasing
Test visibility, update freame buffer (Continue of last lecture)
Interpolation in Screen Space![[Pasted image 20250121104158.png]
Find it depth by converted it back from 2D to 3D
Back to the basics: Barycentrics

Back to the basics: Barycentrics

g : . S
* Barycentric coordinates for a triangle (a, b, ¢) < 4

P(a, 8,7) = aa+ b +~c

— Remember,a+p+y =1, a,B,y =0

» Barycentrics are very general
— Can be applied to X, y, z, u, v, 1, g, b
— Anything that varies linearly in object space, including z

don't even know that
I'm viewing them.

Basic Strategy: get 3D barycentrics

Basic strategy

o Start with x’,y’
* Invert to obtain 3D barycentrics (Cﬁ\ﬁ, Y)

c
2
§ b

« Mathematical approach of derivation:
Start from 3D barycentric coordinates and map to

screen coordinates before we projected it.

-——TFhen-irvemd to go from screen coordinates to (a, S,

P Pl o) 1353/7:10:29 - Basic strategy >

From barycentric to screen-space (before homogenization)

From barycentric to screen-space

» Barycentric coordinates for a triangle (a, b, ¢)

P(a,B,v7) = aa+ b+ ~c

— Remember,a+pf+y=1;, a,f,y =0

» Let’s project point P by projection matrix C

N
QF — C(aa s /Bb + /YC) a’, b, c are the

projected

— aCa el ,BCb + 70(3 homogeneous
/ /

vertices before

CP is projection on 2D of the 3D triangle

Dehomongenized point on the computer screen

From barycentric to screen-space

a’, b’, ¢’ are the
projected

/ / / / homogeneous
= CP = aa +Bb +'YC vertices

» Suggests it’s linear in screen space.
But it’s homogenous coordinates

* From previous slides:

 After division by w, the (x,y) screen coordinates are

By i,; _ aal, + b, + ¢, aay, + Bby, + d),
RIR aal, + Bbl, + v, aal, + Bbl, + v,

Goal: calculate Barycentric coordinates in 3D

Recap: barycentric to screen-space

P'=CP =qaa + pb' +4c

Position on Barycentric
scrfen coordinates

z’ P{ (1’.’11,‘ b :,1: C.(z: a

i / o T lses,
y | X Rl | = a’}’l/ b}? v (/’1/ B
/ y
1 ’ PU) a”ll) b’U) (”U) 7
Projective
equivalence
Projected

vertices

How to Calculate ab r

From Screen to Barycentrics

a a, b, c, Ly
ARV /
o< || @y oy, ©
i ol O B
v Uy Oy Cw

* Recipe

— Compute projected homogeneous coordinates a’, b’, ¢’
— Put them in the columns of a matrix, invert it
— Multiply screen coordinates (X, y, 1) by inverse matrix

— Then divide by the sum of the resulting coordinates
* This ensures the result is sgms to one

Pseudocode - Rasterization

Pseudocode — Rasterization

- For every triangle
ComputeProjection
—~ Compute interpolation matrix
—> Compute bbox, clip bbox to screen limits
For all pixels x,y in bbox
Test edge functions
If all Ei>0
compute barycentrics
interpolate z from vertices
if z < zbuffer(x,y]
interpolate UV coordinates from vertices
look up texture color kd
Framebuffer[x,y] = kd [lor more complex shader

from our previous lecture.

]
) 28:48/1:10:29 - Pseudocode - Rasterization >

Rasterization Anti-aliasing

Supersampling

Supersampling

Trivial to do with rasterization as well
Often rates of 2x to 8x
Requires to compute per-pixel average at the end

Most effective against edge jaggies [} \

Usually with jitt_%rerdsampling
— pre-computed pattern for a big block of pixels

all of our samples right in the
center of pixels to avoid those

Render more than 1 sample per pixel, average the result
Scale up the the image, average it

Multisampling

Related Idea: Multisampling

* Problem
— Shading is expensive
— Supersampling has linear cost in #samples
* Goal: High-quality edge antialiasing at lower cost

* Solution

— Compute shading once per pixel for each primitive, but
resolve visibility at “sub-pixel” level
+ Store (k*width, k*height) frame and z buffers, but share shading
between sub-pixels within a real pixel
— When visibility samples within a pixel hit different
primitives, we get an average of thgir colors

1 BO7es get aptianigted without Jaree sk

average the color of the pixel which has multiple triangle

Multisampling Pseudocode

Multisampling Pseudocode

For each triangle
For each pixel
if pixel overlaps triangle
' color=shade() // only once per pixel!
for each sub-pixel sample
compute edge equations & z
if subsample passes edge equations
&& z < zbuffer[subsample]
zbuffer[subsample]=2z
framebuffer [subsample]=color
At display time: //this is called “resolving”
For each pixel

Pl o) 3816/1:10:29 - Multisampling, Visually >

Comparision

Multisampling vs. Supersampling

* Supersampling
— Compute an entire image at a higher resolution, then
downsample (blur + resample at lower res)

* Multisampling

— Supersample visibility, shading only once per pixel, reuse
shading across visibility samples

 Why?
— Visibility edges are where supersampling helps
— Shading can be prefiltered more easily than visibility

supersampling computes
the larger image

Texture Filtering

Texture Filtering

* We can combine low-pass and sampling

— The value of a sample is the integral of the product of the
image f and the filter /4 centered at the sample location
* “A local average of the image /' weighted by the filter #”

fi = / | _‘f(.'lt)h(:lr)(l.'zr

\ ;
eXtureg Plang o

Low-pass filter

Prefiltering
Apply Low-pass filter to the texture to blur it

MIP-Mapping

MIP-Mapping

» Simplest method: Pick the scale closest,
then do usual reconstruction on that level
(e.g. bilinear between 4 closest texture pixels)

* Problem: discontinuity when switching scale
Projected pre-filter

enough away from the camera

Tri-Linear MIP-Mapping
Use two closet scales, compute reconstruction results from
both, and linearly interpolate between them

Example

MIP Mapping Example

nipmaps & linear interpolation
(tri-linear)

o) 48:43/1:10:29 - MIP Mapping Example >

MIP Maps only store 1/3 more space

Anisotropic filthering

Anisotropic filtering

» Approximate Elliptical filter with multiple circular
ones (usually 5)

* Perform trilinear lookup at each one

* 1.e. consider five times eight values

~ e . . Projected pre-filter
— fair amount of computation

|
i
i

— graphics hardware
has dedicated units to compute
trilinear mipmap reconstruction

Comparison

Image Quality Comparison

s

trilinear mipmapping anisotropic filtering
(excessive blurring)

even as you go pretty
far back into the scene.

» Finding the MIP level

Finding the MIP Level

* Often we think of the @ Projection of pixel center
pre-ﬁlter as a box _ Projected pre-filter
— What is the projection |px = (du/dx, dv/dx)

of the square
pixel “window”
in texture space?

— Answer is in the partial
derivatives px and py 3
of (u,v) w.r.t. screen (x,y) =

\/ i Z%" L RS R (S 1 s TR
L And the derivative of paat

» Ray Casting vs. Rasterization

Ray Casting vs. Rasterization

+» Review

Ray Casting Rasterization
For each pixel For each triangle
For each objm For each pixel
- Whole scene must be in memory - Harder to get global illumination
- Needs spatial acceleration to be - Needs smarter techniques to address
efficient depth complexity (overdraw)
+ Depth complexity: no computation + Primitives processed one at a time
for hidden parts + Coherence: geometric transforms for
+ More general, more flexible vertices only
~ Primitives, lighting effects, + Good bandwidth/computation ratio
adaptive antialiasing + Minimal state required, good memory

behavior

Graphics Hardware

Graphics Hardware

« High performance through
— Parallelism

— Specialization 8 ‘M%

— No data dependency

2 data parallelism

— Efficient pre-fetching [i G] [6) Q
I K
R R R [_:
. k
MOI’G later partaallselism TI TI :T[| N
A MD . | T I %.
F F| [F
i | I I
D D D
good at data parallelism. o
Movies
Combination

Games (2020)
Mostly Rasterization
Some Ray Tracing
CAD-CMD
Ray Tracing
Architecture
Ray Tracing
Vitual Reality
Rasterization
Visualization
Combination
Medical Imaging
Combination

Challenges of Rasterization

Transparency

Transparency

* Triangles and pixels can have transparency (alpha)

* But the result depends on the order in which triangles
are sent

* Big problem: visibility
— There is only one depth stored per pixel/sample
— transparent objects involve multiple depth

— full solutions store a (variable-length) list of visible objects
and depth at each pixel
* see e.g. the A-buffer by Carpenter
http://portal.acm.org/cRaNE AR Y- ¥ 11 opaque object
sitting in front of my window,

76

Alternative approaches
Reyes (Pixar's Renderman)

Defered shading

Deferred shading

» Avoid shading fragments that are eventually hidden
— shading becomes more and more costly

« First pass: rasterize triangles, store information such
as normals, BRDF per pixel

» Second pass: use stored information to compute
shading

» Advantage: no useless shading
» Disadvantage: storage, antialiasing is difficult

We generate a fragment. -

Pre-Z pass

Pre z pass

» Again, avoid shading hidden fragment

« First pass: rasterize triangles, update only z buffer,
not color buffer

« Second pass: rasterize triangles again, but this time,
do full shading

» Advantage over deferred shading: less storage, less
code modification, more general shading is possible,
multisampling possible

» Disadvantage: needs to rasterize twic actually

Tile-based rendering

Tile-based rendering

» Problem: framebuffer is a lot of memory, especially
with antialiasing

» Solution: render subsets of the screen at once

* For each tile of pixels

— For each triangle
« for each pixel

* Might need to handle a triangle in multiple tiles
— redundant computation for projection and setup

* Used in mobile graphi So one thing you could do is
to render subsets of the screen 2

Shadows
Reflections
Global illumination

L19: Real-Time Shadows

Importance of Shadow
Depth cue

Shadows as a Depth Cue

o S0
\\Q ,
2: i = =
it inmgbainin\umei g\
i (R
AR S —— T -

So here, in images A and-- oops.

Scene Lighting
Realism

Contact Points

Shadow in Ray Tracing

Reminder: Shadow in Ray Tracing

* Trace secondary (shadow) rays towards each
light source

* If the closest hit point is smaller than the
distance to the light then the point is in shadow

ey £y

A
A Y

Shadow Maps
Example

Applications of Shadow Maps

Games Movies
Battlefield 3 Pixar Renderman

Key Idea

Shadow Maps Key ldea

Equivalent statements

point is visible from

point is illuminated —_—— light source

* We know how to quickly compute visibility!
« render scene from light point of view
» on GPU: rasterization with depth buffer

8> ﬁ@@ﬁ >

Well, in the shadow

mapping algorithm,

Rasterize with the depth only to check if visible from the light source

By apply the camera position the the light source which can get z-
buffer

Compute the Shadow Map

Shadow Mapping

* Texture mapping with
depth information

()Ii 2t light
shadow map)
<« T e .

i) | s

* 2 passes

o] _ghiadoaricd
— Compute shadow

map == depth from
light source

* You can think of
it as a z-buffer as
seen from the light

— Render final image,
check shadow map
to see if points are
in shadow

Different Light Types require different projection matrices

Different Light Types require
different projection matrices

Spot Light Directional Light Point Light
Camera A Spot Light Cameraf\ pirectional | Camera p\ Point Light
Light .\
@ Scen scene I t
Perspective Orthographic 6x Perspective
Projection Projection Projection (cube)

So if we have a spotlight,
as I've already discussed, p

The Bias (Epsilon) for Shadow Maps

2. The Bias (Epsilon) Nightmare

* For a point visible
from the light source

light

ShadowMap(x’,y’) # z’ ' shadowmap

light P

— But due to rounding
errors the depths
never agree exactly

* How can we
avoid erroneous
self-shadowing?
— Add bias (epsilon)

| 2 >l o) 22:29/56:08 - 2. The Bias (Epsilon) Nightmare >

Example

2. Bias (Epsilon) for Shadow Maps

L £ 1 + bi SREL
if (occluder z @ this z)

Choosing a good bias value can be very tricky

Too little bias

Correct image Way too much bias
“Z-Fighting” “Peter Panning”

“Surface Acne’

23

for avoiding self shadow

Shadow Map Aliasing

3. Shadow Map Aliasing

* Under-sampling of the shadow map
— Jagged shadow edges

And take a look at the shadow
™ that this teapot is casting.

Shadow Map Filtering

3. Shadow Map Filtering

« Should we filter the depth?
(weighted average of neighboring depth values)

* No... filtering depth is not meaningful
Surface at z = 49.8

50.2 | 50.0 | 50.0
xq.-—»—"‘"‘ <49.87

50.1 1.2 1.1 :‘_"7___7@) 22.9 m1

1.3 1.4 1.2

In particular, filtering

a) Ordinary texture map filtering. depth creates this kind .

Does not make sense

« Percentage Closer Filtering

3. Percentage Closer Filtering

+ Instead we need to filter the result of the shadow test
(weighted average of comparison results)

Surface at z = 49.8

60.2 | 50.0 | 50.0

<49.87

x‘-—-»—,

1.3 1.4 1.2 1 1 1

Sample Transform Step
26

« Compute the pencentage of pixel which is occluded
+ Example

3. Percentage Closer Filtering

» 5x5 samples

* Nice antialiased
shadow

+ Using a bigger
filter produces
fake soft shadows

+ Setting bias
is tricky

is certainly a better look
than what we get otherwise.

Cascaded Shadow Maps

Cascaded Shadow Maps

» Cover view frustum
with multiple shadow
maps A

« Commonly: about 5 A
maps with logarithmic et
spacing.

Crytek, SIGGRAPH 2013

sort of different frustum
depths associated to it.

Multiple depth shadow maps
Distance-base cascading

Distance-based cascadmg

Pros and Cons

Cascading Difficulties

The bad

* Visible transitions
between maps. (Must i
filter) A

* Must render one depth
pass per cascade level — i ;
can get expensive.

The gOOd Crytek, SIGGRAPH 2013
« state of the art image quality (real-
time graphics) when combined

__with percentage closer filtering_______,

P Pl o) 33:09/56:08 - Cascading Difficulties >

Shadow Volumes (Stencil Buffer)
Basic Idea

Shadow Volumes

* Explicitly represent the volume %
of space in shadow ;

* For each polygon
— Pyramid with point

light as apex
— Include polygon to cap

Il Pl o) 3358/56:08 - Cascading Difficulties >

Create a shadow volume, check all object in the volume or not, if in, draw
shadow, if not, lit it.

But very computational heavy

Better Shadow Volumes

Better Shadow Volumes

« Shoot a ray from the eye to
the visible point %%
* Increment/decrement a ;
counter each time we

intersect a shadow
volume polygon .

* If the counter # 0,
the pointis <+~ -~
in shadow

Pl o) 36:10/56:08 - Better Shadow Volumes >

Stencil Buffer

Stencil Buffer

* “mask” pixels in one rendering pass to
control their update in subsequent frame buffer
rendering passes

— "For all pixels in the frame buffer" —
"For all masked pixels in the frame
buffer"

 Can specify different rendering
operations for each case:

— stencil test fails

[1]

depth buffer

— stencil test passes & depth test fails

— stencil test passes & depth test passes

stencil buffer

called the stencil buffer. i

unprecise z-buffer

Shadow Volumes with the Stencil Buffer

Shadow Volumes w/ the Stencil Buffer

Initialize stencil buffer to 0
Draw scene with ambient light only 244G
Turn off frame buffer & z-buffer updates

[Draw front-facing shadow polygons
[f z-pass — increment counter ’}:i ~ \ &
.’—/—_’-\-_N

{’Fb«"" [o: t.v\é

(\a
raw back-facing shadow polygons & ~
If z-pass — decrement counter N>
Turn on frame buffer updates -7
N o -,
Turn on lighting and 0
redraw pixels with

counter = (

Calculate the dot product with normal and the direction to the eye
T DAT fac

\

i , if positive, then it is front faccing, if
negative, then it is back facing. apply the increment/decrement
counter again. draw the lighting with counter = 0

Solutions if eye in the shadow

If the Eye is in Shadow...

... then a counter of 0 does %%
not necessarily mean lit
* 3 Possible Solutions:
1. Explicitly test eye
point with respect
to all shadow volumes
2. Clip the shadow

volumes to the
view frustum [

3. "Z-Fail" shadow
volumes

Or there are some specific

types of shadow volumes

Deep Shadow Maps

Deep shadow maps

\0 9,

* Lokovic & Veach, Pixar

: Y : dopt
« Shadows in participating media like smokefmmde
hair, etc.

— They represent not
just depth of the
first occluding
surface, but the
attenuation
along the light rays

* Note: shadowing
only, no scattering

for volumetric effect, semi-transparenet object, small occluders

Results

Deep shadow map results

Figure 11: A cloud with pipes. Notice the shadows cast from surfaces
onto volumetric objects and vice versa. A single deep shadow map
contains the shadow informa gyl j

So here, when we render the

surface downstairs here,

Deep shadow map results

Figure 1: Hair rendered with and without self-shadowing.

just treated as
some fuzzy function

Deep shadow map results

* Advantage of deep shadow map over higher-
resolution normal shadow map:
Pre-filtering for shadow antialiasing

(@) Ball with 50,000 hairs (b) 512 % 512 Normal shadow map (¢) 4k X Ak Normal shadow map (d) 512 512 Deep shadow map

is able to cast a nice fuzzy
shadow at the end of the day. i

Enables motion blur in shadows

Figure 12: Rapidly moving sphere with and without motion blur.

« L20: Color
« Spectra

Crayons

Crayons

http://www.photo-mark.com/notes/201 1/sep/20/crayon-colors/

Spectral Power Distribution

redorange
scariet
red

violetred

redwviolet

violet
blue-violet
brown

yellowgreen
bluegreen
cerylean
A\ \ blue
\\ black
\ green

what we see in this
plot, but rather

Cones and spectral response
How the Eye Works

How the Eye Works

Optic
Nerve

is come from the light
source, bounced off the apple, 2

Photon go through Cornea, Lens, Virtreous, finally to Retina, Retina
perceive light signal and convert to biological signal.

Retina Element

Rods and Cones

Fore lu-ight #E0"
Rods: "o, 050//2’ HEION
Sensitive to light energy

For highHh "
Cones: ';Oﬁotﬂ) HEIN ”
Sensitive to color

but just the presence or absence
of something in front of you.

(del-rodirods_cones g

==Color blindness and metamers
Implication for Displays

Implication for Displays

We can simulate visual effects of
any wavelength by stimulating
three types of cones.

in a fashion that similar,
if not identical, to the way

Long, Medium, Short wavelength of cone

Metamerism & Light source

Metamerism & light source

* Metamers under a given light source

May not be metamers under a different lamp

Clothes appear to match in store (e.g. under neon)
Don’t match outdoor

Context matters for color perception!

we look at different images.

Context matter, Example

Extreme example

FLOOKS GRAY/AND B e -

| Gon't understand this odd dress debate and | feel
W 1t'S @ trick SOmehow.

I'm confused and scared.

PS it's OBVIOUSLY BLUE AND BLACK

e 108,883 4
Kim Kardashian West ¥ Porew

m Srraarcastan

D

What color is that dress? | see white & goid. Kanye
sees black & biue, who is color bliing?

14000 % 2443 1 «-tn

DME PEOPLE THOUGHT
| i |

==Color matching

Wrong Way

Additive Synthesim\g y

» Use it to scale the cone specW)

* You don’t get the same cone response!
(here 0.5, 0.1, 0.1)

S ML

They are not all independent (orthagonal), blue also have green and red
cone

Example

Color Matching Experiments

“Ma this
color.”

One
well, frequency
wavelength, whatever. : length

CIE RGB Color Matching

CIE RGB Color Matching

0.40 :1 Tr Ty rrrrrors TrrrrrrrTrT Trrrrrrrrr Trrrrrrrrr T I:
3 T
030 f 0]
: b ()
0.20 F £
0.10 ‘ E
0.00 E :
(),l()s...l.“N { B ('t
400 500) 600 700 800

mep flen wikipedia orgleiki/CIE_1931_color_space

==Color spaces
Chromaticity Diagram (Full Color Space)

Chromaticity Diagram

08 B X
nv XY +2
0.6 = Y
o TX+Y+2Z

Divide out
luminance

0.0

e AR for visualizing what this is. [ENEEG—GG_

CIE Primaries (triangle)

CIE Primaries

0.91

0.81

RGB are vertices;
can achieve
colors inside the
triangle by
combining them

0.71
0.6+
5007

0.51

0.44

0.14

0.0 e —rrrrrr—rr—rr
00 01 02 03 04 05 06 07 08

HSV (Hue, Saturation, Value(Luminance))

Alternative Color Spaces

Saturation Saturation

Value

Lightness
—

. ! .,

Designed to be more intuitive

Il '»| %) '5633/1:06:27 - Altemative Color Spaces >

CMYK

Subtractive Color

What matters is the color a
pigment does not absorb!

Il Pl o) 5733/1:06:27 - Subtractive Color >

Subtract color from white

Gamma
Color quantization gamma

Color quantization gamma

» The human visual system is more sensitive to ratios
Nr—

— Is a grey twice as bright as another one?

* Ideal encoding? Log

* But log has asymptote at zero

is wasted a little
Solution: gamma bit because we end up

Gamma encoding

Gamma encoding overview

» Digital images are usually not encoded linearly
« Instead, the valué X' ig stored

* Need to be decoded if we want linear values

is that it allows us to store
an image with equal amounts

Example

Gamma encoding

Credit: Greg Ward

* Only 6 bits for emphasis

Linear

So on the top, we take a linear
ramp of intensity values.

72

Summary

In summary

 It’s all about linear algebra

— Projection from infinite-dimensional spectrum to a 3D
response

— Then any space based on color matching and metamerism
can be converted by 3x3 matrix

« Complicated because
— Projection from infinite-dimensional space
— Non-orthogonal basis (cone responses overlap)
— No negative light

* XYZ 1s the most standard color space

* RGB has many flavors

You're working with
non orthogonal bases.

69

L21: Image Processing (Post processing)
Basic Concept
Image processing can touch up images after rendering

Lots of per pixel filters

Alpha Blending

Alpha Blending

N2 j\\\el m}.

AR

c=acy+ (1 —a)c
¢ ¢ = foreground color
cp = background color

Premultiplied alpha:

Storegzc,rather than c.in an image.

Green Screen

Green Screen

8 where, essentially, you have a
green screen behind the actor.

Compositing Algebra

Compositing Algebra

A over B AinB AoutB A atop B A xor B

P —

Partially-
ransparent
Aand B

intersections, and so on.

Color Space Operations

Color Space Operations

(R,G.B) = (fi(R,G, B), h(R,G, B), f3(R. G, B)

S‘Ayle hs*)fva’fﬁ)f\/
mvit. daka.

So essentially, you're just
applying the same sledgehammer

Apply every pixel to a function
Brightness

Color Space Operations

(R: Ga B) = (fl(Ra G, B)a fz(R* G> B)’ f3(R7 Ga B))

>l) 17:30/1:02:05 « Color Space Operations >

Multiplay by a constant

Contrast

Color Space Operations

(Rv Ga B) = (fl(RaGaB)’fQ(Ra Ga B)af3(R> Ga B))

It's using the
in a better fag

Strengh the value to 0 - 1

Desaturation

Color Space Operations

(Rv Ga B) = (fl(Rv G7 B)a f'Z(Rv Ga B)a f3(R7 G7 B))

Dynamic Range (HDR)

Dynamic Range

* * ‘

-12STOPS -10STOPS -8 STOPS -6STOPS -4 STOPS -2STOPS

o

t oS |
L/

probably not a grea
-ustops _ -tostops _-sstops s practice in photography.
Bttps 'waw avensis. be lutorials vray- free images viay -high-dynamic-raage-bdri hdri -dynamic-rasge-big.jpy

Approximate Dynamic Rnage

|
Approximate Dynamic Range

Scene Dynamic range

Sunny landscape 100,000:1
Eye (static) 100:1
Eye (single view with quick adaptation) 10,000:1
Camera 1,000:1
Standard display 1,000:1

Glo

Vial

ssy print 250:1

Exposure Fusion

Exposure Fusion

/

‘ - / o e R\ Iz a /4
AT UL ﬂ“(4

Tone Mapping

Tone Mapping

Minification

Smaller image

Magnification
Gigger image
Filters involving larger neighborhoods, onlinearity
Convolution
Kecdl”: Convolution
1| ' ' " f..........'...:'lm“nd'erf(‘m_‘)‘.
: E f(x)
. 3% : f att-v)

05- n'aln v e u nle alale'sa bals’e (f.gn)

oL . i i ;

15 1 05 0 0.5 1 15 2 25 3

&t

hetp:/ ‘aplosd wikimedia.org wikipedia comenans b b9 Convolution_of_spiky_fanction_with_bax2 gif

} | o) 39:15/1:02:05 - Other Applications of Sampling >

3x3 3x3. calculate

Image Convolution

Example: Blur

Convolution Kernels

)y 1Pt

This isn't surprising

« Example: Edge detect

Convolution Kernels

‘Edge detect

o) 42:37/1:02:05 * Convolution Kerels >

« Example: Emboss

Convolution Kernels

43:04 / 1:02:05 = Convolution Kernels >

» Big-O for convolution

I S—__ g
Big-O for Convolution

For each pixel i
~ For j-th pixel in convolution kernel
p;+t=m¥in,
——n X n 1mage
——m X m kernel

\ -/

) 43:37/7:02:05 - Big-O for Convolution >

« Edge-perserving filtering

» Unsharp Mask
- Bilateral Filtering

Bilateral Filtering

JGaussian Bilateral

+ Median filtering

Median Filtering

original image 1px median filter

2ny madian filter 10ny median filter

L22: Output Devices
« Graphics Stack

Graphics Stack

Application (e.g., 3D Game)

Kernel Space
OS Kernel

Device Driver

Hardware

GPU Chipset
2:48 / 50:49 - Graphics Stack >

2D Displays

2D Displays

« Many different technologies
— Cathode ray tube (CRT) display
— Liquid crystal display (LCD)
— Light-emitting diode (LED) display
— Plasma display panel (PDP)
— Organic light-emitting diode (OLED) display
— Digital Light Processing (DLP)
— Electronic paper

CRT Display
LCD (Liquid Crystal Displays)

Video Explanation of LCD

the horizontal plane
to pass through it

wps://www.youtube.com/watch?v=0B79dGR 19Tg

LED (Light-Emitting Diode)

PDP (Plasma Display Panels)
OLED (Organic Light-Emitting Diode)

Organic Light-Emitting Diode (OLED)

» Use organic materials that produce light under voltage

* Film of organic compound emitting light in response
to current

* No backlight: Deep blacks, thin, high contrast

Qi—" Emissive polymer layer

Cathode

Conducting
polymer layer

o) 19:03/50:49 - Organic Light-Emitting Diode (OLED) >

Organic Light-Emitting Diode (OLED)

* Very good power efficiency
» Light weight, flexible, transparent

 Fast response time, large viewing angle
 But current cost is high and lifespan is low

isBeing applyied, —_—
but | could be wrong.

Il Pl <) 79:30/50:49 - Organic Light-Emitting Diode (OLED) >

DLP (Digital Light Processing)
3D Displays

Binocular Vision - Stereopsis
Depth Perception
Autostereoscopic Displays

Autostereoscopic Displays

 Binocular parallax without glasses

* Two different types
— Lenticular lenslets

— Parallax barrier (baCk) LG Optimus 3D Nintendo 3DS

=)

(Light cannot
pass through.)

P Pl o) 31:35/50:49 « Autostereoscopic Displays - Binocular parallax w... >

Virtual Reality & Augmented Reality Displays
Field of View

Field of View

110
Oculus

000*5 Field of View Comparison
b N

